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We analyze the attractors of associative-memory neural networks in which analog neurons compete
locally. These networks are well suited for a variety of feature-extraction, pattern-classification, and
data-compression tasks. For networks storing a finite number of patterns, we present bifurcation dia-
grams for the pattern overlaps. For networks storing an extensive number of patterns, we present phase
diagrams showing attractor types as a function of pattern-storage fraction and neuron-transfer-function
steepness. We also report results for the storage capacity of k-winner associative memories in the limit
of infinite neuron gain. Numerical investigations of computer-generated networks confirm the phase dia-

grams.
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I. INTRODUCTION

Associative memory has long been a benchmark for
measuring the performance of novel neural network ar-
chitectures [1-6]. Over the last decade, statistical tech-
niques have been developed to analyze associative-
memory storage [7,8] and applied with great success to
fully connected, stochastic networks of two-state neurons
[9]. It is important now to apply these techniques to net-
work architectures that can solve real-world problems us-
ing readily available technology.

In this paper, we study associative memory in net-
works in which analog-valued neurons complete in local-
ized clusters. We introduced these networks and dis-
cussed their stability properties in the preceding paper
(Ref. [10], hereinafter referred to as I). Localized com-
petition makes these networks well suited for feature-
extraction or pattern-classification applications, in which
input data must be assigned to one or a few of many
different categories. Such problems occur frequently in
image processing, where the different categories might be
different colors, depths, textures, elementary image
features, or written characters. Other possible applica-
tions include speech recognition [11,12], analysis of
DNA, proteins, and other complex molecules [13-15],
and data-compression methods such as principal-
component analysis and vector quantization [11,16].

The architecture of competitive analog networks is
shown schematically in Fig. 1. The networks are similar
to standard analog networks [17-28], in that a set of
deterministic update equations determines each neuron’s
output by passing its input through a smooth, continuous
analog transfer function. The update equations, in which
time can be either a continuous or discrete variable, de-
scribe networks of resistively coupled nonlinear
amplifiers that either run freely or are clocked externally.
Such networks can be easily implemented in analog elec-
tronic circuitry [10]. Benefits of analog processing in-
clude discrete-time, parallel updating without oscillation
[10,20-22,29] and suppression of spurious fixed-point at-
tractors [24,25].
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What distinguishes competitive analog networks is
that, in addition to communicating through synaptic in-
terconnections, neurons also compete through a mecha-
nism that constrains neuron outputs in localized clusters
to sum to a constant at all times. Competition makes the
output of a neuron depend on the inputs of all neurons in
its cluster, enabling neurons to perform more complicat-
ed computations than are possible in standard analog net-
works. We concentrate here on clusters that implement
winner-take-all or k-winner functions of their inputs,
meaning that one or k neurons have large outputs in a
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FIG. 1. (a) Analog network with local competition. Circles
represent neurons, filled squares represent interconnections, and
dashed ellipses demark clusters of competing neurons. Network
shown has N=3 clusters with Q =4 neurons per cluster. (b)
Smooth, continuous analog neuron transfer function that
satisfies conditions given in Sec. II of paper I.
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cluster at any time while the other neuron outputs are
suppressed. Other network architectures with similar
competitive interactions include the neocognitron [30], a
variety of classifiers and vector quantizers [11,16,31,32]
and networks of Potts spins [33-42].

The networks we study are configured as associative
memories in which some subset of neurons in each cluster
are chosen to win the competition in each stored pattern.
The main result of this paper is a set of analytical phase
diagrams [7,23,26,27] describing the attractors of these
networks as a function of the neuron-transfer-function
steepness and the ratio of the number of stored patterns
to the number of clusters. By indicating regions of pa-
rameter space where memory recall is possible as well as
regions where spurious fixed points or oscillatory attrac-
tors exist, the phase diagrams provide quantitative guide-
lines for designing and operating associative memories.
A similar diagram has been reported recently for an asso-
ciative memory of Potts spins [38,39]. Similarities and
differences between competitive and Potts networks are
noted throughout the paper. From a practical viewpoint,
competitive networks are much more easily implemented
in electronic circuitry than are Potts networks.

In Sec. II, we discuss how to configure analog competi-
tive networks as associative memories. We outline in Sec.
III the statistical techniques we use to study memory
storage and retrieval in these networks, and we define the
different types of attractors— paramagnetic, recall, spin-
glass, and oscillatory —the networks can have. We ana-
lyze the retrieval capability of competitive networks that
store a finite number of patterns in Sec. IV and an exten-
sive number of patterns in Sec. V. The results of this
analysis are summarized in bifurcation diagrams for the
memory overlap in finitely loaded networks (Sec. IV) and
phase diagrams for several different configurations of ex-
tensively loaded networks (Sec. V). In Sec. VI, we report
storage capacities for k-winner networks in the limit of
infinite neuron gain. Section VII contains results of nu-
merical investigations that support the analytical results.
Our results are summarized in Sec. VIII.

II. COMPETITIVE ASSOCIATIVE MEMORIES

In this section, we describe competitive analog net-
works configured to operate as associative memories. A
more detailed explication of competitive networks ap-
pears in I.

The networks we study evolve according to either the
continuous-time differential equations

dx;, (1)
T=—x,-a(t)+Fa(hia(t)+B,-(t)) (1)
or the discrete-time, parallel-update equations
X (t+1)=F_(h;,(t)+B;(t)), (2)
where
N 2
hio()=3 3 J&x;,(t) . A3)
j=1b=1

In Egs. (1) and (2), the index i labels the N clusters
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(i=1,...,N) and the index a labels the Q neurons in
each cluster i (a=1,...,Q). The neuron inputs A, (),
the neuron outputs x,(z), the analog input-output
transfer functions F,(z), and the interconnection matrix
J,-jb are all real valued. The time-dependent bias terms
B,(t) are determined implicitly by the competitive con-
straints [10]

Q

> x;,(£)=0 (continuous time) , 4)
a=1

[Y

> x;,(t+1)=0 (discrete time) . (5)
a=1

The Q transfer functions F,(z), a=1,...,Q, are the
same for each cluster. Thus the clusters all have the
same cluster gain 3 [10]. The transfer functions are nor-
malized so that outputs of winning neurons are approxi-
mately 1/k. To ensure that all neuron outputs x;, equal
zero for sufficiently low cluster gain, we require that all
transfer functions have the same value of F,(0). We pay
particular attention to networks in which all transfer
functions are given either by

1

Fa(z)=—Q—_—1—[Q exp(yz)—1], (6)

which we refer to as winner-take-all networks, or by

F,(z)= {Q[1+exp(—yz)] "=k},

1
k(Q—k)
1<k<Q—-1,

which we refer to as k-winner networks. In winner-take-
all networks, the neuron with the largest input in each
cluster has a large output, while the other Q —1 neuron
outputs are suppressed. In k-winner networks, the neu-
rons with the k largest inputs in each cluster have large
outputs, while the other Q —k neuron outputs are
suppressed. Examples of the transfer functions (6) and (7)
are depicted in Fig. 2. The parameter ¥, which we refer
to as the neuron gain, controls the slope of both func-
tions.

The interconnection matrix Ji‘J’-b couples the output of
neuron b in cluster j to the input of neuron a in cluster i.
The matrix is constructed to store p patterns &%, where
p=1,...,pand i=1,...,N, using a form of the Hebb
rule [33]:
s=1_ S (05 ,—k)NQS ,—K), JP=0. ®

T NQ? = a, & b,gh > Vi
Examples of patterns are shown in Fig. 3. Each & is a
set of different integers indicating which neurons are
chosen to win the competition in cluster i for pattern pu.
The k different integers in this set, where 1<k <Q—1,
are chosen randomly and without bias from the set of in-
tegers {1,...,0}. For example, the statement
&=1{1,2,...,k} means that, in pattern u, neurons
1,2, ...,k are chosen to win the competition in cluster i.
For winner-take-all networks, the value of k in Eq. (8) is
always 1, while for k-winner networks, it is in the range
1=k =Q—1. For both network types, the case Q =2 is
equivalent to associative memories of standard analog
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FIG. 2. Neuron transfer functions used in competitive associ-
ative memories: (a) winner-take-all functions, Eq. (6), for cluster
of Q=3 neurons with y=1, 3, and 10; (b) k-winner functions,
Eq. (7), for cluster of Q=7 neurons and k=2 winners with
v=1, 3, and 10.

neurons [23-28]. Sums over the patterns &% in Eq. (8)
and the rest of this paper imply summation over all k
values of &¥. Other forms of the Hebb rule that have
been studied for Potts networks [42] are not considered
here.

i=1 i=2 i=3
u=1
g!
u=2
&2 1,2 1,4 2,3

H=3 ..O. ‘O.. 0.0.

&> 1,24 1,3,4 2,34

FIG. 3. Examples of patterns that can be stored in competi-
tive network of Fig. 1(a), showing how &% and k are defined. For
each of patterns 1, 2, or 3, k=1, 2, or 3 neurons are chosen to
win competition in each cluster. Winner-take-all networks can
store patterns like £!; k-winner networks can store patterns like

é—l, §2, or 53.

III. STATISTICAL MECHANICS
FOR ANALOG NETWORKS

We use the Liapunov function L (¢) [Eq. (18) of I] and
the stability criterion [Eq. (39) of I] to analyze the attrac-
tors of competitive analog networks. The procedure is to
treat L (¢) as an energy [27] and to apply standard tech-
niques of statistical mechanics for disordered systems
[7,9]. A crucial step in this procedure is to introduce an
auxiliary temperature, which has no physical meaning
and is set to zero at the end of the calculation [27]. The
auxiliary temperature enables the derivation of a free en-
ergy f per neuron, which provides information about
metastable states. When the auxiliary temperature is set
to zero, the metastable states become the fixed points of
the dynamical system for which L (¢) is a Liapunov func-
tion. For a particular interconnection matrix J,‘}b, the
free energy per neuron is [27]

f————lnf i H H [dp(x;,)]exp[ —BL(t)], 9)

i=la=1

where B is the inverse of the auxiliary temperature and
dp(x;,) equals 1 on the range of the transfer function
F,(z) and O otherwise [27].

We stress that the networks we study are completely
deterministic; the auxiliary temperature is simply a
mathematical device allowing the use of statistical
mechanics to learn about attractors. Thus we are not in-
terested in the free energy at nonzero values of the auxili-
ary temperature (which describes networks of noisy ana-
log neurons). Note that this procedure works only for
networks in which all cluster gains satisfy the stability
criterion, since otherwise L () is not a Liapunov func-
tion. Other methods can be used to analyze networks in
the region in which the stability criterion is violated
[28,43]. In this paper, however, we consider period-two
limit cycles to be undesirable and study only networks
guaranteed to be free of them.

Important issues for reliable associative-memory per-
formance include how many patterns can be stored, what
other fixed points exist besides those corresponding to
stored patterns, how neuron gain affects pattern retrieval,
and how the stability criterion appearing as Eq. (39) of I
affects discrete-time, parallel-update networks. In the
next four sections, we address these issues both analyti-
cally, by using the free energy (9) to derive phase dia-
grams [7,23,26,27] summarizing different attractor types,
and numerically, by studying attractors of small
computer-generated networks. Useful quantities for
characterizing attractors are the p pattern overlaps m,,,
defined as

_1 3 -
m":FEleéé" u=1,...,p (10)
and a spin-glass order parameter g, defined in Sec. V as
_ 1 k(@—k) X
11
N0 (0—1D ggzl an

Successful recall of pattern u means that m, is of order 1,
while all other overlaps m,, v#pu, are much less than 1.
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We show that in the limit of finite memory loading, in
which the storage fraction a=p /N is zero, two attractor
types can occur: (i) a paramagnetic fixed point, for which
g=0, and all m,=0, and (ii) memory recall fixed points,
for which ¢>0 and one m, is of order 1. When the
storage fraction a is greater than zero, two other attrac-
tor types can exist in addition to the paramagnetic and
recall attractors: (iii) spin-glass fixed points, for which
g >0 but all m MZO, and (iv), period-two limit cycles,
which can occur when the stability criterion of I is violat-
ed in discrete-time, parallel-update networks.

IV. COMPETITIVE ASSOCIATIVE MEMORIES
WITH FINITE MEMORY LOADING

We first consider competitive associative memories in
the limit of finite memory loading, in which the number p
of stored patterns remains finite while the number N of
clusters becomes large, so that a=0. The analysis in this
limit is particularly simple because the interference be-
tween patterns is negligible [7]. We show that a discon-
tinuous, hysteretic transition from paramagnetic to
memory recall behavior can occur as neuron gain y in-
creases.

Figure 4, which is the main result of this section, shows
bifurcation diagrams for the overlap m when m,, =md, ,
in winner-take-all and k-winner networks with finite
memory loading. The diagrams show the overlap as a
function of #=y/Q for winner-take-all networks and
$=vk(Q—k)/Q? for k-winner networks. For both net-
work types, a single solution exists at low 4 and three
solutions exist at high 9. The single solution m =0 at
low 7 is the paramagnetic solution, for which all neuron
outputs x;, equal zero. The three solutions at high ¥ are
the paramagnetic solution and two recall solutions that
approach the values 1 and —1/(Q —1) for winner-take-
all networks and 1 and —1/(Q —1) for k-winner net-
works, where O =max{Q/k,Q/(Q—k)}.

Solutions for m correspond to fixed points of the up-
date equations (1) and (2) only if they are stable. Stable
solutions are indicated by solid curves and unstable solu-
tions by dashed curves in Fig. 4. We demonstrate in Ap-
pendix B that (i) the paramagnetic solution is stable for
# =1 and unstable for ¥ > 1; (ii) the positive recall solu-
tion is always stable; and (iii) the negative recall solution
is unstable for winner-take-all networks with Q >2 but
can be stable at low gain for k-winner networks.

Two distinct types of behavior appear in Fig. 4. For
Q =2 in winner-take-all networks and {0 =2 in k-winner
networks, a single bifurcation occurs at ¥=1, in which
the paramagnetic solution becomes unstable and two
stable recall solutions appear. Stable paramagnetic and
recall solutions never coexist. For all other values of Q
and Q that we have tested, two bifurcations occur: one at
#=1, in which the paramagnetic solution becomes unsta-
ble, and another at =49 <1, in which a stable recall
solution and another unstable solution appear at a
nonzero value m =m?™*. Stable paramagnetic and recall
solutions coexist for * <9 <1, and the networks are
hysteretic in this region. The values #* and m* are
shown in the insets of Fig. 4.
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The bifurcation diagrams of Fig. 4 are derived from the
free energy (9) [7,27,34,36,42]. For finite p and Q, the
free energy per neuron averaged over patterns in the limit
N—owis

)

> . (12)
13

In Eq. (12), the brackets { ), denote an average over all
possible realizations of the stored patterns, the functions
G,(x) are given by Eq. (19) of I, and the overlaps m,
obey the saddle point equations

mM=<F§M

(a

f::

[STE

b, P
2_‘, m,— 2 (ml‘F§M
p=1 p=1

p
vgl mv8§#Y§V+B

Fa

0
+3 (e,
a=1

p
”gl m#80,§“+B

P
S m Sy ot B > . (13)
v=1 ! 13

L=
SN w b wNR
» O eD>mEO

FIG. 4. Bifurcation diagrams for overlap m as a function of
gain parameter ¥ in networks with finite loading, showing first-
order transition from paramagnetic to recall behavior. Curves
are for Q=2, 3, 4, 5, 7, and 10 neurons per cluster in (a)
winner-take-all networks (for which =7y /Q) and (b) k-winner
networks with k=1, or Q@ —1 [for which $=yk(Q—k)/Q?].
Stable solutions are indicated by solid curves, unstable solutions
by dashed curves. For k-winner networks, solutions for m de-
pend only on Q /k; however, stagility of negative solution is Q
dependent. Insets show values ¥ of gain parameter and m* of
overlap when the nonzero solution for overlap first appears.
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The quantity B in Egs. (12) and (13) is determined impli-
citly by the competitive constraint

§ <F >§=0 :

a=1
The derivation of Eqgs. (12)-(14) is outlined in Appendix
A.

To construct bifurcation diagrams, we look for solu-
tions of Egs. (12)-(14) with m,=m$, ; in networks in
which all neurons have the same transfer function
F,(z)=F(z). Inserting these simplifications and perform-
ing the average over patterns leads to

fzémz-—mF(m +B)+kG(F(m+B))
+(Q—k)G(F(B)),

(14)

p
”él m#8“’§,,+B

(15)
m=kF(m+B), (16)
kF(m+B)+(Q—k)F(B)=0. (17)

Combining Eqgs. (16) and (17) gives a self-consistent equa-
tion for the overlap m:
2 —m
A .

This result is analogous to the equation m =F(m) which
holds for standard analog associative memories at finite
loading [27]. For winner-take-all and k-winner networks,
Eq. (18) reads

m=—(Q—k)F|F! (18)

1—[(Q—1)m+1]exp(—ym) (winner-take-all)

m= —1
o, @k=11=m)
=% [H (0/k—Dm+1 oPrm)
(k-winner) . (20)
1 T T T R 1 T T
() (b)
m i m m

]
~

a~ =0 ]

o
-
o m W

=7

~
[

=
I | B |
o= o

o m
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Equation (19) is identical to the mean-field equation
describing Potts associative memories at temperature
T=Q(Q—1)/y in the limit of finite loading [34,36,42].
However, as we show below, this equivalence does not
persist for extensive loading [27,28].

Figure 5 shows typical behavior of the mean-field equa-
tions (19) and (20). In Figs. 5(a)-5(c), the left-hand and
right-hand sides of the winner-take-all mean-field equa-
tion (19) are plotted as functions of m for three different
values of ¥ for Q =7. The three values of ¥ are chosen to
be less than §*, between #* and 1, and greater than 1.
Figures 5(d)-5(f) show similar plots for the k-winner
mean-field equation (20) for Q=7 and k=1 or 6. Two
invariance properties of Eq. (20) are apparent in Fig. 5.
First, because Q and k appear in Eq. (20) only in the ratio
Q /k, any solution for k winners in Q-neuron clusters is
also a solution for nk winners in nQ-neuron clusters, for
all positive integers n. Second, the solutions of Eq. (20)
for k and (Q—k) winners per cluster are identical,
despite the fact that, as seen in the figure, the right-hand
side of Eq. (20) is not invariant under the transformation
k—(Q—k). Thus solutions of Eq. (20) with the same
value of O =max[Q /k,Q /(Q —k)] are identical.

Stability of solutions of the mean-field equations is
determined by the eigenvalues of the matrix
?*f /8m ,0m,, of second derivatives of the free energy
with respect to the overlaps. Solutions are stable only if
all eigenvalues are positive. The eigenvalues are calculat-
ed in Appendix B; for the case m,=m3,, ; of a single suc-
cessfully recalled pattern, the matrix is diagonal, with
two eigenvalues. As shown in Fig. 4, the positive recall
solution is always stable for winner-take-all and k-winner
networks, while the negative recall solution is always un-
stable for winner-take-all networks with Q >2 and for k-
winner networks with @ >2 and k=1 or Q —1. Howev-
er, the negative recall solution can be stable at low gain
for k-winner networks with 1 <k <Q —1. This result is
illustrated in Fig. 6, which shows, for various k, the value
of ¥ at which the negative recall solution becomes unsta-

I
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i FIG. 5. Left-hand side (diago-
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FIG. 6. Values of ¥ at which negative recall solution be-
comes unstable in finitely loaded networks as a function of Q /k
for k=2, 4, 6, 8, and 10. Stability is determined by eigenvalues
of 3*f /3m ,0m,,.

ble as a function of Q /k.

Finally, we note that spin-glass and oscillatory attrac-
tors do not appear in networks with finite memory load-
ing. Spin-glass attractors do not appear because, as im-
plied by Eq. (13), the overlaps are nonzero whenever the
neuron outputs are nonzero. Oscillatory attractors do
not appear because, as is shown in Sec. V, the intercon-
nection matrix (8) is positive definite for finite loading so
that the stability criterion is satisfied for all values of
cluster gain. Thus paramagnetic and recall attractors are
the only attractor types.

We have shown in this section that competitive associ-
ative memories with finite memory loading undergo a
discontinuous, hysteretic transition from paramagnetic to
recall behavior as their transfer functions steepen. This
result yields the @ =0 axes of the phase diagrams that ap-
pear in the next section for extensively loaded networks.
We show in the next section that the hysteretic transition
from paramagnetic to recall behavior persists at low but
finite a. This is in contrast to standard analog networks,
for which the phase diagram exhibits a spin-glass region
between the paramagnetic and recall regions for all a>0
[23,26,27]. We have also seen that, in the finite loading
limit, competitive winner-take-all associative memories
and finite-temperature Potts associative memories obey
the same mean-field equation. This equivalence does not
persist at finite a, due to differences between determinis-
tic and stochastic dynamics.

V. COMPETITIVE ASSOCIATIVE MEMORIES
WITH EXTENSIVE MEMORY LOADING

We now consider competitive associative memories in
which the number p of patterns varies extensively with
the number N of clusters as p=aN. The interference be-
tween patterns can no longer be ignored in these net-
works [7]. We use the replica method, assuming replica
symmetry, to derive a set of self-consistent equations for
the overlaps m « and the spin-glass order parameter g.
We expect replica-symmetry-breaking effects to be small,
as they typically are for Hebb-rule associative memories
[44,45].
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Figures 7 and 8 show several analytical phase diagrams
[7,23,26,27] for continuous-time and discrete-time net-
works with transfer functions given by Egs. (6) and (7).
These diagrams, which are the main result of this paper,
indicate the types of attractors that the networks can
have as a function of the gain parameter § and the ratio
a=p /N of patterns to clusters. [Recall that $=vy /Q for
winner-take-all networks and that $=yk(Q —k)/Q? for
k-winner networks.] The diagrams are valid in the limit
of large N and finite Q.

The diagrams of Fig. 7, which are for continuous-time
updating, each contain three regions labeled pm
(paramagnetic), recall, and sg (spin glass). In the
paramagnetic region, the networks have a single global
attractor at the origin of state space, x;, =0 for all a and
i. Thus ¢=0 and all m,=0 in this region. In the spin-
glass region, the networks have many fixed-point attrac-
tors away from the origin. These attractors are charac-
terized by ¢ >0 and all m,=0: the paramagnetic attrac-
tor is unstable, but fixed points corresponding to stored
patterns have not yet appeared. In the recall region, the
networks function reliably as associative memories, with
fixed points that have large overlaps with the stored pat-
terns. These fixed points are characterized by g >0 and
one or more m,, > 0.

The diagrams of Fig. 8, which are for discrete-time,
parallel updating, also contain paramagnetic, recall, and
spin-glass regions. In addition, each contains a region
marked osc (oscillatory) in which the stability criterion
[Eq. (39) of I] is violated. The function L (¢) [Eq. (18) of
I] is not a Liapunov function in this region. Recall and
spin-glass attractors may still exist, but the networks can
also have period-two limit cycle attractors. Outside the
oscillation region, the phase diagrams are identical to
those for continuous-time updating. Although no oscilla-
tory regions appear in the phase diagrams of continuous-
time networks, unavoidable neural and synaptic delays
can lead to oscillatory attractors in electronic implemen-
tations [46].

In Figs. 7(a)-7(c) and 8(a)-8(c), the recall region is it-
self divided into two parts by a dashed curve. In the
smaller, low-gain part, recall fixed points coexist with the
paramagnetic fixed point, while in the larger, high-gain
part, they coexist with spin-glass fixed points. Similar
behavior has been reported in stochastic Potts associative
memories for the case Q =3 [38,39]. The effect is impor-
tant because it implies that the spurious attractors that
often degrade associative-memory performance [24,25]
are not present in the low-gain part of the recall region.
As seen in Figs. 7 and 8, the effect is more prominent at
higher values of Q. In Figs. 7(d) and 8(d), recall fixed
points coexist only with spin-glass fixed points.

The phase diagrams are computed from the free energy
(9) and, for discrete-time updating, from the stability cri-
terion [Eq. (39) of I]; details of the calculation appear in
Appendix C. When a network has nonzero overlaps m,
with finite number s of patterns, v=1, .. .,s, the free en-
ergy f per neuron is determined in the limit of large N as
a saddle point over the overlaps m,, the spin-glass order
parameter g, and a third quantity C. The saddle-point
equations are
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mv:</x\§v)z,§’ v=1,...,s, 21)  The quantities r and 7 are
1
1 k(Q——k)< g AZ) r=—9% — = . (26)
g=—"8"% (3 32} | (22 —cp 1—C
0 o0-1 ag( nt ) (1—C)
12 The boundaries in Figs. 7 and 8 are calculated as fol-
1 k(Q—k) lows. The boundary of the recall region, also known as

Q
< DS zafc,,> . (23)
2,6

a=1

arQ Q-—1

In Eqgs. (21)-(23), the Q quantities X, are determined im-
plicitly by

the storage capacity a,, is found numerically as the larg-
est value of a for which a solution of Egs. (21)—(23) exists
with m; ~1 and all other m,=0. The boundary between
the spin-glass and origin regions is found by expanding

s ar k(Q—k) 172 Eqgs. (21)-(23) to leading order in the small quantities X,,.
X,=F, |3 m‘,Sa’ §V+ o0 0=1 This expansion is carried out in Appendix D. For net-
v=1 Qe ¢ works in which all neurons have the same transfer func-
tion F(z), the boundary has the analytical form
N k(Q—k
+xa%—%2T)(r—1)+B , (24)
Q L @7)

with B determined by the competitive requirement
34%,=0. The brackets { ), , indicate an average over
the patterns £¥ and over the Q continuous variables z, us-
ing a Gaussian distribution:

F(F~Y0))=

k(Q—k) 1+2vVa/(Q—1) ’

where F'(z) is the derivative of F(z). For both winner-
take-all and k-winner networks, Eq. (27) yields

o 2 dz 1 1
O _>< %1 Jexp | -1 22<>>. 25 p= —
e f—w,,gl Var |9F 2% “I"e @) Y 2Va/io-1 28
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FIG. 7. Phase diagrams for extensively loaded associative memories with continuous-time updating, showing different attractor
types as function of storage fraction a and gain parameter 9. First three diagrams are for winner-take-all networks with (a) Q =3, (b)
0 =4, and (c) Q=5 neurons per cluster; fourth diagram (d) is for k-winner networks with Q =4 neurons and k =2 winners per clus-
ter. Labels pm, sg, and recall denote paramagnetic, spin-glass, and recall regions. Dashed curves within recall region in (a)-(c) indi-
cate boundary between coexistence of recall attractors with paramagnetic attractor (low gain) and with spin-glass attractors (high
gain).



4544

Finally, the boundary of the oscillation regions of Fig. 8
is determined by the stability criterion derived in I. For
winner-take-all and k-winner clusters, the cluster gain 8
is determined from Egs. (35) and (36) of I to be

_2(_QQ-1—/T) (winner-take-all)
B= 0y (29)

K0 —K) (k-winner) .
(30)

For large N, we find that the minimum eigenvalue of the
interconnection matrix (8) is

. _a k(Q—k)
min Q Q . 1
This result was found by numerically computing the ei-
genvalue spectra of computer-generated interconnection
matrices; typical results for winner-take-all matrices ap-
pear in Fig. 9. The results of Fig. 9 were generated by
constructing 20 matrices according to Eq. (8) for network

A (31)

0.6 .
L (@)
04
o
m
0.2 p
I
0
0.1
1.2 v
- (b)
0.8 -
(04
04 +
pPm
0
0.1

F.R. WAUGH AND R. M. WESTERVELT 47

sizes N =50, 75, 100, 150, and 200 for three sets of Q and
a. For large N, the eigenvalue spectra are similar to that
of a standard Hebb-rule matrix [47-49], with aN positive
eigenvalues forming a continuous distribution, N degen-
erate eigenvalues equal to zero, and N(Q —1—a) nega-
tive eigenvalues grouped about the value —a/Q. Com-
bining Eq. (39) of I and Egs. (29)-(31) yields the follow-
ing expressions for the oscillation region boundary:

;:7 % (winner-take-all)
o= _ _ (32)
é 4k(Q SZ)(Q L) (k-winner) .

(33)

The storage capacity boundary terminates at the oscilla-
tion region boundary because L (z) is not a Liapunov
function in the oscillation region.

The winner-take-all phase diagrams, Figs. 7(a)-7(c),
are similar but not identical to phase diagrams for sto-
chastic associative memory networks of Potts spins at
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| (©
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FIG. 8. Phase diagrams for extensively loaded associative memories with discrete-time parallel updating, showing different attrac-
tor types as function of storage fraction a and gain parameter ¥. First three diagrams are for winner-take-all networks with (a) Q =3,
(b) =4, and (c) Q=5 neurons per cluster; fourth diagram (d) is for k-winner networks with Q =4 neurons and k =2 winners per
cluster. Labels pm, sg, recall, and osc denote paramagnetic, spin-glass, recall, and oscillatory regions. Dashed curves within recall
region in (a)-(c) indicate boundary between coexistence of recall attractors with paramagnetic attractor (low gain) and with spin-glass
attractors (high gain). Outside oscillatory region, diagrams are identical to those for continuous-time updating in Fig. 7.
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FIG. 9. Mean (markers) and standard deviation (error bars)
of negative eigenvalues of computer-generated winner-take-all
associative memory interconnection matrices for various values
of Q and a, showing that distribution of negative eigenvalues
approaches a 8-function peak at A;,= —a/Q as N— . Inset:
Histogram of eigenvalue distribution for 20 matrices with
N=150, 0=4, k=1, and a=0.4. Vertical axis of histogram is
logarithmic.

finite temperature [38,39]. Phase boundaries for the two
network types are identical in the limits of infinite gain
and of finite memory loading. The storage capacity
values in the infinite-gain limit—which are a,=0.414,
0.828, and 1.375 for Q=3, 4, and 5—are the same as
those reported in Ref. [33] for Potts networks. The
values of 7 at which recall attractors appear in the finite-
loading limit—which are #*=0.915, 0.805, and 0.713
for Q=3, 4, and 5—were reported in Refs. [34], [36],
and [42] for Potts networks.

Aside from these limits, phase diagrams for analog
competitive networks and Potts networks are not
equivalent, due to differences between deterministic, ana-
log dynamics and stochastic, discrete-state dynamics
[23,24,26,27,50]. The mean-field treatment of finite-
temperature Potts systems [51,52] yields a reaction field
term [53] that subtracts each spin’s influence from its
own local field, whereas no reaction field appears in the
neuron inputs (3) of competitive networks. This
difference is illustrated in Fig. 10, which compares phase
diagrams of winner-take-all competitive networks and
Potts networks for the case Q =3. The phase boundaries
for Potts networks are from Refs. [38] and [39] and are
plotted as functions of (Q —1)B, where B is the inverse
temperature. The paramagnetic—spin-glass transition
and the spin-glass—recall transition both lie further to the
right of the diagram for stochastic networks as compared
to analog networks. An intuitive explanation is that the
reaction field acts as an effective noise source in the sto-
chastic Potts network, decreasing the temperature at
which transitions occur.

4545
0.6
o
04
0.2 -
pm —— competitive
''''' Potts
0.1 1 10 100
¥ or B(Q-1)

FIG. 10. Comparison of phase diagrams for winner-take-all
competitive networks (solid curves) and Potts networks (dashed
curves) for Q =3. Horizontal axis is gain parameter ¥ for com-
petitive networks and B(Q —1) for Potts networks, where 3 is
inverse temperature. Data for Potts networks were supplied by
authors of Refs. [38] and [39].

VI. STORAGE CAPACITY
IN INFINITE-GAIN LIMIT

For a given network configuration, the maximum value
of the storage capacity a, is usually achieved in the limit
of infinite neuron gain, aside from small reentrant effects
[39,54]. In this limit, the mean-field equations (21)—(23)
simplify considerably. All but one dimension of the in-
tegrals can be done analytically, and the three equations
can be reduced to one. These simplifications arise be-
cause outputs of high-gain neurons take on one of only
two values, which are 1/k or —1/(Q —k ), respectively,
for winning or losing neurons.

Infinite-gain storage capacities a,(Q,k) are shown in
Fig. 11 and Table I for 2<Q <15 and 1<k <7. The re-
sults hold also for zero-temperature Potts networks gen-
eralized to k-winner behavior, since the reaction field in
these networks vanishes when T'=0. The capacities obey
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FIG. 11. Storage capacities a.(Q,k) for winner-take-all and
k-winner associative memories in infinite-gain limit. Because of
symmetry relation a.(Q,k)=a.(Q,Q—k), only capacities for
Q/k =2 are shown. Capacities also appear in Table I.
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the symmetry relation a.(Q,k)=a (Q,Q —k), which is
not outwardly apparent in the infinite-gain mean-field
equations below. Some of the results for k =1 have been
reported previously for Potts networks [33,38,39,42].

Figure 11 and Table I are calculated from the infinite-
gain mean-field equations

k 0
=——t = 34
m Q—~k+Q—kI"” (34)
20 172
= I, 35
€= lamkig—rig—1n | ‘e 33
1
= 36
1= 9—1° (36)
where
1, = * df_exp(—zz)
—o V7
k—1Q—k+m
X 3 3 K,.{i[l+erf(z)]}2*+m—n
m=0 n=0
X{i[1+erf(z+y)]}" (37)
and
© dz ) k—1Q—k+m
Ic=[" % -
c f_w ﬂ_zexp( z9) 3

m=0 n=0
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TABLE 1. Storage capacities a.(Q,k) of winner-take-all and
k-winner associative memories in the limit of infinite neuron
gain. Because of the symmetry relation a.(Q,k)
=a.(Q,0Q—k), only capacities for Q /k =2 are shown. Capaci-
ties are plotted in Fig. 11.

k 1 2 3 4 5 6 7
Q
2 0.138
3 0.414
4 0.828 0.560
5 1.375  0.799
6 2.053 1.104 0.946
7 2.859 1.468 1.159
8 3.790 1.891 1418 1.305
9 4.844 2371 1.718 1.501
10 6.019 2908 2.055 1.734 1.646
11 7.312 3502 2.430 1998 1.831
12 8.722 4.151 2.840 2292 2.047 1976
13 10.25  4.856 3.287 2.612 2288 2.153
14 11.89  5.617 3.770 2960 2.554 2.356 2.296
15 13.64  6.432 4.287 3.334 2.841 2.581 2.467

(QK,,, {L[1+erf(z)]}2 K Fm {1 +erf(z+y)]}"

+(Q—k)L,, {L[1+erf(z)]}"{L[1+erf(z—y)]} QK Tm—n) (38)

The coefficients K, and L,,, are

B k—1 0—k N
Kpn = Q—k+m—n n |(7D
x L [[(@—k+p—1), (39)
m! =
k 0—k—1
Lpn= Q—k+m—n n ’(—1)
l m
Xm!pI;Il(Q k+p—1), (40)

and the quantity y is defined as

172
o(Q—1)
2ark(Q —k)

y=m (41)

Equations (34)—(36) reduce to a single equation for y:

y =g—_};(gz,,, — k)20 +VIak(Q@—K)/Q . @2)
The infinite-gain storage capacities a, of Fig. 11 and
Table I indicate the value of a at which the nonzero solu-
tion of Eq. (42) disappears. Because the replica-
symmetric assumption breaks down for very large neuron
gain, the storage capacities derived from Eq. (42) are not
exact. By analogy with known results for Ising and Potts
associative memories [38,39,44,51], we expect the exact
storage capacities to be slightly higher than those appear-
ing in Fig. 11 and Table 1.

VII. NUMERICAL VERIFICATION
OF PHASE DIAGRAMS

To test the phase diagrams derived in Sec. V, we have
investigated the attractors of computer-generated com-
petitive associative memories with discrete-time, parallel
updating. Results are shown in Fig. 12. Each panel of
Fig. 12 tests one of the phase diagrams in Fig. 8 along a
horizontal line. The panels show, as a function of the
gain parameter 7, the fraction of randomly generated ini-
tial conditions that flow to each of the four possible types
of attractors—the paramagnetic attractor, a recall at-
tractor, a spin-glass attractor, or an oscillatory attractor.
The first three panels in Fig. 12 are for three different
winner-take-all network configurations: Fig. 12(a) is for
networks with N =100 clusters, Q =3 neurons per clus-
ter, and storage fraction a=0.2; Fig. 12(b) is for net-
works with N=75, Q =4, and a=0.4; and Fig. 12(c) is
for networks with N=60, Q =5, and a=0.8. The last
panel, Fig. 12(d), is for k-winner networks with N =75
clusters, Q =4 neurons per cluster, kK =2 winning neu-
rons per cluster, and storage fraction a=0.2.

The data in Fig. 12 were generated by starting from
random initial conditions

1

i (0)=————(Q6,, — k), 43
X;,(0) k(Q—k)(Q ab, ) (43)
where each b;, i=1, ..., N, is a set of k different integers
chosen randomly and without bias from the set

{1,...,Q}. A total of 500 initial conditions were used
for each panel, 20 from each of 25 different interconnec-
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FIG. 12. Fraction of randomly generated initial conditions flowing to paramagnetic (circles), spin-glass (diamonds), recall
(squares), and oscillatory (triangles) attractors in small, computer-generated competitive networks with discrete-time parallel updat-
ing. First three panels are for winner-take-all networks with (a) N=100, Q=3, and a=0.2; (b) N=75, =4, and «=0.4; and (c)
N=60, Q=35, and a=0.8. Fourth panel (d) is for k-winner networks with N=75, 0=4, k =2, and ¢=0.2. Each panel tests one
phase diagram of Fig. 8 along a horizontal line; at top of each panel, boxes labeled pm, sg, recall, and osc indicate corresponding
phase-diagram regions. The data strongly support the phase diagrams.

tion matrices constructed according to Eq. (8). The up-
dated equations (2) were then iterated until convergence
to a fixed-point or period-two attractor. The fixed points
were classified into three categories: recall attractors, for
which one of the threshold overlaps

thr —

N
m, FII; > sgn(xié,,) , (44)
i=1 !

is greater than 0.9; paramagnetic attractors, for which
x;, =0 for all i and a; and spin-glass attractors, which are
all other fixed-point attractors.

At the top of each panel are four boxes containing the
names of the different attractor types—recall, pm, sg,
and osc—that can occur in discrete-time networks.
These boxes indicate the location on the appropriate
phase diagram in Fig. 8 of the four phase regions for the
particular value of «a wused in that panel. The
paramagnetic—spin-glass transitions and the spin-
glass—recall transitions occur at values of 7 predicted by
the phase diagrams; the lack of sharpness in these transi-
tions is the result of finite-size effects. Oscillatory attrac-
tors appear at values of ¥ somewhat higher than that
given by the stability criterion, which is, however, a
worst-case result. We discuss the delayed appearance of
oscillatory attractors in competitive networks in paper I.
One notable feature of Fig. 12 is that recall ability de-
creases as ¥ increases within the recall region. Improved
performance at lower gain has been observed in a variety
of analog systems [18,19,23,55,56] and has been investi-
gated analytically in standard analog associative
memories [24,25].

VIII. SUMMARY

We have combined techniques of nonlinear dynamics
and the statistical mechanics of disordered systems to an-
alyze associative memory in analog neural networks with
localized competitive interactions. Our results, summa-
rized in the phase diagrams of Sec. V, indicate that these
networks work reliably as associative memories over a
large range of storage fraction and transfer-function gain.
The results are relevant to networks of resistively coupled
nonlinear amplifiers that either evolve in continuous time
or are clocked externally.
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APPENDIX A

In this appendix, we derive the mean-field equations
(12)-(14) for finite memory loading. Assuming all clus-
ters to have the same Q transfer functions F,(z),
a=1,...,0, and using Eq. (8) for the interconnection
matrix, we write the free energy per neuron (9), averaged
over all possible realizations of the patterns £#, as
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f=— BN <1nf H dp(x;,)]expf

2N ‘2 e}
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>§'

(A1)

The brackets )§ indicate pattern averaging. The squared sum in the exponent is made linear in the neuron outputs us-

ing a Gaussian identity, which introduces the p overlaps m,, u=1, ..

.,p [7,9]. In the limit N — oo, the second term in

the exponent vanishes, the integrals over the overlaps can be done by saddle-point integration, and sums over the clus-

ter index i are self-averaging. The resulting free energy is

Zm ——<1an[dp(x )lexpfB Em X g

where the overlaps satisfy the saddle-point equations
m =(<x“)x)§. (A3)

The brackets { ), in (A3) indicate an average over the in-
tegrand appearing in the free energy:

[ T ldptx, )1 O)
()y>— ,
[ Tldp(x )11

(A4)

where

I=expfB zm X e EG

As discussed in Sec. III, we are interested only in the
B— o limit of the free energy. In this limit, the integrals
over the neuron outputs x, can be done by saddle-point
integration. The saddle-point equations are determined
by maximizing I with respect to the x,, subject to the
competitive constraint ¥ ,x, =0. Using a Lagrange mul-
tiplier B to enforce this constraint leads to the following
saddle-point equations:

zm”8a’§”+B >§, a=1,...,Q .
u

Inserting (A6) into the free energy (A2) and the overlaps
(A3) leads to Egs. (12) and (13).

APPENDIX B

The stability of the overlap solutions in finitely loaded
networks is determined by the eigenvalue spectrum of the
matrix 3°f /dm,dm,,, where f is the free energy (12). A
solution is stable if all eigenvalues of this matrix are posi-
tive. When all neurons have the same transfer function
F(z), the matrix is

ZG(X

> , (A2)
I3

3f _ '
dm,0m,, ‘<8P’” 85",5"}7 (h§”+B)

L e
SF'(h,+B) s

F'(hy+B)F'(h 4 +B)
> , (B

where h, =3,m,8, .. and F'(z) is the transfer-function

derivative. In the case m,=m$, ; of a single successful-
ly recalled pattern, the matrix is diagonal, with the fol-

lowing two eigenvalues:

}»lzl——%k(Q—k)F’(m—kB)F'(B) , (B2)

= _L — ’ 2
h=1= g k(k=DF(m+B)

+(Q—k)XQ—k —1)F'(B)
+2k(Q—k)F'(m+B)F'(B)], (B3)
where

S=KkF'(m+B)+(Q—k)F'(B) (B4)

The eigenvalue A, indicates stability of a solution with
respect to perturbations of the nonzero overlap m, while
A, indicates stability with respect to perturbations of the
other p —1 overlaps m u» 4> 1. Note that the eigenvalues
A, and A,, unlike the mean-field equation (20) for k-
winner networks, are not invariant to replacing Q and k
by nQ and nk for positive integers n. Thus the stability
of solutions of Eq. (20) depends on Q, even though the
solutions themselves depend only on the ratio Q /k.

APPENDIX C

In this appendix, we sketch the derivation of the
mean-field equations (21)-(23) for extensive memory
loading. The derivation follows the standard replica ap-
proach; we refer the reader to Refs. [7], [9], and [27] for
details. In the replica approach, the identity

Inz= lim (z"—1) (C1)

n—0

is used to write the free energy (9) per neuron, averaged
over all possible realizations of the patterns, as
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>§—1|] . ©

where the brackets { ) £ indicate pattern averaging. The index o, which labels the replicas, runs from 1 to n. To make
the squared sum in (C2) linear in the neuron outputs, the p pattern overlaps m,, u=1, ..., p, are introduced using a
Gaussian identity. The patterns are separated into a finite number s of “condensed” patterns with nonzero overlaps and
an infinite number p —s of “uncondensed” patterns with vanishing overlaps. The average over uncondensed patterns is
performed assuming that each pattern £} occurs with equal probability k!(Q —k )!/Q!, and the overlaps corresponding

to these patterns are integrated out. After using self-averaging to remove the site index i and taking the N — oo limit,
the free energy is

2
f= lim “‘B;“[(f H dP m ]expﬂ 2N z ;x"é‘ —

n—0 i,a,0

1 - )2 -
w 2 i) 20

f= lin}) iexp Z(m +ETrln —Bqo—Bq) +— Zqorg—}— S q%7r”
n—

fo’r:éa’)
_—l%<lnfn[dp )Jexp Bzmvxgv—/)’ZG (xg
fﬁM Ry R oo’ a a' >
+ 20 01 E(Bro Bagza Nk (C3)

oo’ oo’

The quantities m9, gg, 3, ¢°° , and r°? are order parameters. The matrices I, qy, and q; in Eq. (C3) are n Xn; I is the
identity matrix, qq is a diagonal matrix with diagonal elements equal to ¢, and q is a symmetric matrix with diagonal
elements equal to O and off-diagonal elements equal to g°°. The pattern average ¢ ) ¢ is now over the s condensed pat-
terns £Y, v=1,...,s

We now assume replica symmetry, meaning that the values of the order parameters in Eq. (C3) are independent of re-
plica index o. Physically, replica symmetry means that there is only one fixed point in the vicinity of a stored memory.
By analogy with Ising associative memories, for which replica-symmetry-breaking effects are small [44,45], we believe
that the replica-symmetric solution is correct over a wide range of neuron gain but breaks down for very high gain.

Applying replica symmetry and taking the limit » —O0 yields

f=iSm2+la éln[l—ﬁ(qo—q)]——L,M +q,7+B(gy—q)r
v B 1 _3(qo -q )
1 k k X X 1/2
E(lnf IT (4ptx, JexpB | S mox = 3, G, x, Q—(QQ—:I—)(F—I)E xi+ |5 (QQ ) l pERD } :
(C4)
f
where 7=p(r,—r). The brackets ¢ >z,§ stand for an 1 k(Q—k) | 5
average over both the s condensed patterns £* and the Q Ul 0 —Q—:I——«E X > ) ’ (C8)
. . . . .. . a 2,
continuous variables z, using a Gaussian distribution:
d r= [—lh ) (C9)
Zq _ 2 —Plgo—9q
<>Z,§_,<f[01 T e |43 O) - (€9 1
F=——7—, (C10)
1—B(go—

The saddle-point equations for m,, g, g, 7, and 7 are cal-
culated by setting the partial derivatives of f with respect where
to these variables equal to zero:

J T1 [dpx)I()

() cé ;
m,, (<x§ >x )z,§ ( ) < )xﬂ (C11)
[dp(x,)]I
_ 1 k-0 / ITtdp
Blgy—a)= | === | ((Zzx ) (el
arQ  Q a x[z8 and I is the integrand appearing in double brackets in f:
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a k(Q—k) 2
+2Q——Q—-—l (7 l)gxa
ko—k) |
ar —
+19 o zsz (C12)

At the saddle point, the free energy can be written as

f=72mf,+%a

1 _
—=In[1—PB(gy—q)
Bn[ Blgo—q)]

+(q0—q)7+B(qo—q)r]

—%(mf I (dpix, )]1) 5 (C13)

z,

We are interested only in the S— o limit of the
saddle-point equations (C6)—(C10). In this limit, the in-
tegrals over the neuron outputs x, can themselves be car-
ried out by saddle-point integration. This entails finding
the values %, for which the argument of the exponent in
Eq. (C12) is a maximum, subject to the competitive con-
straint 3 ,%,=0. Using a Lagrange multiplier B to en-
force this constraint leads to the Q saddle-point equations
for the X, that appear as Eq. (24). These values of X, are
then inserted into (C6)—(C8) to yield the saddle-point
equations (21)-(23). Note that, since the right-hand side
of Eq. (C7) is finite as B— «, g, must approach g in such
a way that B(g,—q)=C approaches a finite value.

APPENDIX D

In this appendix, we derive the boundary (27) between
the paramagnetic and spin-glass regions when the transi-
tion between these regions is continuous. The procedure
is to expand Eq. (24) to leading order in the quantities X,
with all overlaps m, equal to zero. Inserting the result
into the saddle-point equations (22) and (23) allows the in-
tegrals in these equations to be done analytically.

Expanding Eq. (24) around X,=0 when all neurons
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have the same transfer function F(z) leads to

X, =®[a(F—1)UX,+arVz,+86B], (D1)
where ®=F'(F~1(0)) and
172
_ 1 k(Q—k) 1 k(Q—k)
U—Q—'——-—Q_1 , = _arQ—Q—l (D2)

The quantity 8B, which is first-order in X, and z,, is
determined by the competitive constraint 3%, =O0:

83=—éz[a(7——l)U5€a+aera]. (D3)

a

Inserting (D3) into (D1) and solving for X, yields
2,=—Y® 5.z, (D4)

Xy =T .
1—'(1(7“1)U‘D b

where M, =8,,—1/Q. The expansion (D4) is then in-
serted into the saddle-point equations (22) and (23) for g
and C:

= arve |
l—a(F—1)UD
dz, . 5
Xfl;I \/Er eXp _nga aECMabMaczbzc
2
pidperairrg KA ®3)
c=v arV o
1—a(F—1)UP
XIH il exp |[—L13z2 | S Mz,z,
» /'—“2‘”_ 2 - a = ab“a
=V |T=aronwe |7 )

Inserting the expressions (26) for » and 7 into Egs. (D5)
and (D6) produces two equations in the two quantities ®
and C; eliminating C yields the boundary curve of Eq.
(27).

[1]J. A. Anderson, Kybernetik, 5, 113 (1968).

[2] D. J. Willshaw, O. P. Buneman, and H. C. Longuet-
Higgins, Nature 222, 960 (1969).

[3] S.-I. Amari, IEEE Trans. Comput. C-21, 1197 (1972).

[4] T. Kohonen, IEEE Trans. Comput. C-23, 444 (1974).

[5] W. A. Little, Math. Biosci. 19, 101 (1974).

[6]J. J. Hopfield, Proc. Natl. Acad. Sci. US.A. 79, 2554
(1982).

[7]1D. J. Amit, H. Gutfreund, and H. Sompolinsky, Phys.
Rev. A 32, 1007 (1985); Phys. Rev. Lett. 55, 1530 (1985);
Ann. Phys. (N.Y.) 173, 30 (1987).

[8] E. J. Gardner, J. Phys. A 21, 257 (1988).

[9] Recent reviews and collections of articles include J. Amit,
Modeling Brain Function: The World of Attractor Neural

Networks (Cambridge University Press, Cambridge, MA,
1989); Statistical Mechanics of Neural Networks: Proceed-
ings of the XIth Sitges Conference, Sitges, Barcelona, 1990,
edited by L. Garrido (Springer-Verlag, New York, 1990);
Models of Neural Networks, edited by E. Domany, J. L.
van Hemmen, and K. Schulten (Springer-Verlag, New
York, 1991); Physica A 185, 343 (1992).

[10] F. R. Waugh and R. M. Westervelt, preceding paper,
Phys. Rev. E 47, 4524 (1993).

[11]S. C. Ahalt, A. K. Krishnamurthy, P. Chen, and D. E.
Murthy, Neural Networks 3, 277 (1990).

[12] J. S. Bridle and S. J. Cox, in Advances in Neural Informa-
tion Processing Systems 3, edited by R. P. Lippmann, J. E.
Moody, and D. S. Touretsky (Kaufmann, San Mateo, CA,



47 ANALOG NEURAL NETWORKS WITH LOCAL ... . II. ... 4551

1991), p. 234.

[13] A. Lapedes, C. Barnes, C. Burks, R. Faber, and K. Sirot-
kin, in Computers and DNA, SFI Studies in the Sciences of
Complexity, edited by G. Bell and T. Marr (Addison-
Wesley, Reading, MA, 1989), Vol. 7, p. 157.

[14] M. C. O’Neill, Nucleic Acids Res. 19, 313 (1991).

[15] H. Bohr, J. Bohr, S. Brunak, R. Cotterill, H. Fredholm, B.
Lautrup, and S. Petersen, FEBS Lett. 261, 43 (1990).

[16] J. Rubner and K. Schulten, Biol. Cyber. 62, 193 (1990).

[17] M. A. Cohen and S. Grossberg, IEEE Trans. SMC 13, 815
(1983).

[18] J. J. Hopfield, Proc. Natl. Acad. Sci. U.S.A. 81, 3008
(1984).

[19]J. J. Hopfield and D. W. Tank, Science 233, 625 (1986).

[20] R. M. Golden, J. Math. Psych. 30, 73 (1986).

[21] C. M. Marcus and R. M. Westervelt, Phys. Rev. A 40, 501
(1989).

[22] F. Fogelman Soulie, C. Mejia, E. Goles, and S. Martinez,
Complex Syst. 3, 269 (1989).

[23] C. M. Marcus, F. R. Waugh, and R. M. Westervelt, Phys.
Rev. A 41, 3355 (1990).

[24] F. R. Waugh, C. M. Marcus, and R. M. Westervelt, Phys.
Rev. Lett. 64, 1986 (1990); Phys. Rev. A 43, 3131 (1991).

[25] T. Fukai and M. Shiino, Phys. Rev. A 42, 7459 (1990).

[26] M. Shiino and T. Fukai, J. Phys. A 23, L1009 (1990).

[27] R. Kiihn, S. Bos, and J. L. van Hemmen, Phys. Rev. A 43,
2084 (1991).

[28] M. Shiino and T. Fukai, J. Phys. A 25, L375 (1992).

[29] E. Goles-Chacc, F. Fogelman-Soulie, and D. Pellegrin,
Disc. Appl. Math. 12, 261 (1985); E. Goles and G. Y.
Vichniac, in Neural Networks for Computing, AIP Conf.
Proc. No. 151, edited by J. S. Denker (American Institute
of Physics, New York, 1986), p. 165.

[30] K. Fukushima, Biol. Cyber. 36, 193 (1980); Neural Net-
works 1, 199 (1988).

[31] D. E. Remelhart and D. Zipser, in Parallel Distributed
Processing, Vol. 1, edited by J. A. Feldman, P. J. Hayes,
and E. E. Rumelhart (MIT Press, Cambridge, MA, 1986),
p. 151.

[32]J. A. Hertz, A. S. Krogh, and R. G. Palmer, Introduction
to the Theory of Neural Computation (Addison-Wesley,

Reading, MA, 1991), Chap. 9.

[33] I. Kanter, Phys. Rev. A 37, 2739 (1988).

[34] D. Bollé and F. Mallezie, J. Phys. A 22, 4409 (1989).

[35] J.-P. Nadal and A. Rau, J. Phys. I (Paris) 1, 1109 (1991).

[36] D. Boll¢, P. Dupont, and J. van Mourik, J. Phys. A 24,
1065 (1991).

[37] D. Boll¢, P. Dupont, and B. Vinck, J. Phys. A 25, 2859
(1992).

[38] D. Boll¢é, P. Dupont, and J. Huyghebaert, Phys. Rev. A
45, 4194 (1992).

[39] D. Boll¢é, P. Dupont, and J. Huyghebaert, Physica A 185,
363 (1992).

[40] P. A. Ferrari, S. Martinez, and P. Picco, J. Stat. Phys. 66,
1643 (1992).

[41] G. M. Shim, D. Kim, and M. Y. Choi, Phys. Rev. A 45,
1238 (1992).

[42] H. Vogt and A. Zippelius, J. Phys. A 25, 2209 (1992).

[43]J. F. Fontanari and R. Koberle, J. Phys. (Paris) 49, 13
(1988).

[44] A. Crisanti, D. J. Amit, and H. Gutfreund, Europhys.
Lett. 2, 337 (1986).

[45] G. A. Kohring, J. Stat. Phys. 59, 1077 (1990).

[46] C. M. Marcus and R. M. Westervelt, Phys. Rev. A 39, 347
(1989).

[47] S. Geman, Ann. Prob. 8, 252 (1980).

[48] A. Crisanti and H. Sompolinsky, Phys. Rev. A 36, 4922
(1987).

[49] Y. Le Cun, I. Kanter, and S. A. Solla, Phys. Rev. Lett. 66,
2396 (1991).

[50] H. Takayama and K. Nemoto, J. Phys.: Condens. Matter
2, 1997 (1990).

[S1]E. J. S. Lage and J. M. Nunes da Silva, J. Phys. C 17, L593
(1984).

[52] D. J. Gross, I. Kanter, and H. Sompolinsky, Phys. Rev.
Lett. 55, 304 (1984).

[53] D. J. Thouless, P. W. Anderson, and R. G. Palmer, Philos.
Mag. 35, 593 (1977).

[54] J.-P. Naef and A. Canning, J. Phys. I (Paris) 2, 247 (1992).

[55] C. Koch, J. Marroquin, and A. Yuille, Proc. Natl. Acad.
Sci. U.S.A. 83, 4263 (1986).

[56] R. Durbin and D. Willshaw, Nature 326, 689 (1987).



